
Diseconomies of scale 

Allan Kelly, allan@allankelly.net 

Software Development and Agile consultant 

Without really thinking about it you are not only familiar with the idea of economies of 
scale: you expect economies of scale. Much of our market economy operates on the 
assumption that when you buy or spend more you get more per unit of spending. The 
assumption of economies of scale is not confined to free-market economies: the same 
assumption underlies much Communist-era planning. 

At some stage in our education – even if you never studied economics or operational 
research – you will have assimilated the idea that if Henry Ford builds a million identical 
black cars and sells a million cars, then each car will cost less than if Henry Ford 
manufactures one car, sells one car, builds another very similar car, sells that car, and 
continues in the same way another 999,998 times. 

The net result is that Henry Ford produces cars more cheaply and sells more cars more 
cheaply so buyers benefit. This is economies of scale. 

The idea and history of mass production and economies of scale are intertwined. I’m not 
discussing mass production here, I’m talking economies of scale, diseconomies of scale and 
software development. 

Milk is cheaper in large cartons 

That economies of scale exist is common sense: every day one experiences situations in 
which buying more of something is cheaper per unit than buying less. For example, you 
expect that in your local supermarket buying one large carton of milk – say four pints – will 
be cheaper than buying four one-pint cartons. 



 

Small cartons of software are cheaper and less risky 

So ingrained is this idea that it is newsworthy when shops charge more per unit for larger 
packs complaints are made. In April 2015 The Guardian newspaper in London ran this 
story headlined "UK supermarkets dupe shoppers out of hundreds of millions" about multi-
buys which were more expensive per item than buying the items individually. 

Economies of scale are often cited as the reason for corporate mergers. Buying more allows 
buyers to extract price concessions from suppliers. Manufacturing more allows the cost per 
unit to be reduced, and such savings can be passed on to buyers if they buy more. 
Purchasing departments expect economies of scale. 

I am not for one minute arguing that economies of scale do not exist: in some industries 
economies of scale are very real. Milk production and retail are examples. It is reasonable 
to assume such economies exist in most mass-manufacturing domains, and they are clearly 
present in marketing and branding. 

But – and this is a big 'but'... 

Software development does not have economies of scale 



In all sorts of ways, software development has diseconomies of scale. If software 
development was sold by the pint, then a four-pint carton of software would not just cost 
four times the price of a one-pint carton, it would cost far more. 

Once software is built there are massive economies of scale in reselling (and reusing) the 
same software and services built on it. Producing the first piece of software has massive 
marginal costs; producing the second identical copy has a cost so close to zero it is 
unmeasurable – Ctrl-C, Ctrl-V. 

Diseconomies abound in the world of software development. Once development is 
complete, once the marginal costs of one copy are paid, then economies of scale dominate, 
because marginal cost is as close to zero as to make no difference. 

Diseconomies 

Software development diseconomies of scale have been observed for some years. Cost 
estimation models like COCOMO actually include an adjustment for diseconomies of scale. 
But the implications of diseconomies are rarely factored into management thinking – 
rather, economies-of-scale thinking prevails. 

Small development teams frequently outperform large teams: five people working as a 
tight team will be far more productive per person than a team of 50, or even 15. Academic 
studies have come to similar findings. 

The more lines of code a piece of software has, the more difficult it is to add an 
enhancement or fix a bug. Putting a fix into a system with a million lines of code can easily 
be more than ten times harder than fixing a system with 100,000 lines. 

Experience of Kanban style work in progress limits shows that doing less at any one time 
gets more done overall. 

Studies show that projects that set out to be big have far higher costs and lower 
productivity per deliverable unit than small systems. 

Testing is another area where diseconomies of scale play out. Testing a piece of software 
with two changes requires more tests, time and money than the sum of testing each change 
in isolation. 

When two changes are tested together the combination of both changes needs to be tested 
as well. As more changes are added and more tests are needed, there is a combinatorial 
explosion in the number of test cases required, and thus a greater than proportional change 
in the time and money needed to undertake the tests. But testing departments regularly 
lump multiple changes together for testing in an effort to exploit economies of scale. In 
attempting to exploit non-existent economies of scale, testing departments increase costs, 
risks and time needed. 

If a test should find a bug that needs to be fixed, finding the offending code in a system that 
has fewer changes is far easier than finding and fixing a bug when there are more changes 
to be considered. 



Working on larger endeavors means waiting longer – and probably writing more code – 
before you ask for feedback or user validation when compared to smaller endeavors. As a 
result there is more that could be 'wrong', more that users don't like, more spent, more that 
needs changing and more to complicate the task of applying fixes. 

Think diseconomies, think small 

First of all you need to rewire your brain: almost everyone in the advanced world has been 
brought up with economies of scale since school. You need to start thinking diseconomies of 
scale. 

Second, whenever faced with a problem where you feel the urge to 'go bigger', run in the 
opposite direction: go smaller. 

Third, take each and every opportunity to go small. 

Fourth, get good at working 'in the small': optimize your processes, tools and approaches to 
do lots of small things rather than a few big things. 

Fifth – and this is the killer: know that most people don’t get this at all. In fact, it’s worse, 
they assume bigger is better. 

This is an except from Allan Kelly's latest book Continuous Digital which is now available on 
Amazon and in good bookshop. 

About Allan Kelly 

Allan Kelly helps companies large and small enhance their agile processes and boost their 
digital products. Past clients include: Virgin Atlantic, Qualcomm, The Bank of England, Reed 
Elsevier and many small innovative companies you've never heard of. He invented Value 
Poker, Time-Value Profiles and Retrospective Dialogue Sheets. A popular keynote speaker 
he is the author of "Dear Customer, the truth about IT" and books including "Project 
Myopia", "Continuous Digital", "Xanpan" and "Business Patterns for Software Developers". 
His blog is at https://www.allankellyassociates.co.uk/blog/ and on twitter he is 
@allankellynet. 


